COSMO Lecture 0 System Modelling and Optimization Lecture 1 Function, Inequality, and Graph

Instructor: Hoi-To Wai, Dept of SEEM, CUHK

June 22, 2024

interactive demo:

What is a Function?

What is a Function?

$$f: X o Y$$

 $x \mapsto f(x)$

- A mapping from set X to Y^1 such that $x \in X$, $f(x) \in Y$.
- X(domain) = accepted input; Y(codomain) = possible output.
- This lecture will take $X \equiv \mathbb{R}$, $Y \equiv \mathbb{R}$ for most of the time.

¹A **set** is a collection of unique **elements**.

What is a Function?

$$f: X \to Y$$

 $x \mapsto f(x)$

In words, a function is a machine / black box that relates input to its corresponding output.

Examples of Function (Abstract Form)

f(x)=10+20x

Example: a polynomial function

$$f(x) = x + 2x^2 + 3x^3 + 4x^4$$

Example: an *exponential function*

$$f(x) = 10^x$$

Example: an *piecewise function*

$$f(x) = egin{cases} |x| - rac{1}{2}, & |x| \ge 1, \ rac{1}{2}x^2, & |x| \le 1. \end{cases}$$

- A *function* describes a **relationship** between input & output.
- (Warm-up) Example: It costs \$10 to buy a pen at a bookstore. What will be the total cost if I wish to buy x pen?

- A function describes a relationship between input & output.
- (Warm-up) Example: It costs \$10 to buy a pen at a bookstore. What will be the total cost if I wish to buy x pen?
 ▷ buying 1 pen = \$10, 2 pen = \$20, 3 pen = \$30, ...
 ▷ the total cost is a function of x, with the relationship:

$$f(x) = 10 \cdot x.$$

▷ The above function is also a **linear function** — since it satisfies $f(\alpha x + \beta z) = \alpha f(x) + \beta f(z)$ for any x, y.

- Example: In Hong Kong, the salary tax is calculated with a progressive rate.
- Suppose that \$x is your yearly income.
- Let f(x) be the tax you pay.

	應課税入 息實額	税率	税款
首	50,000	2%	1,000
另	50.000	6%	3.000
	100,000		4,000
另	50,000	10%	5.000
	150,000		9,000
另	50,000	14%	7.000
	200,000		16,000
餘額		17%	

- Example: In Hong Kong, the salary tax is calculated with a *progressive* rate.
- Suppose that \$x is your yearly income.
- Let f(x) be the tax you pay.

	應課税入 息實額	税率	税款
			s
首	50,000	2%	1,000
另	50.000	6%	3.000
	100,000		4,000
另	50,000	10%	5,000
	150,000		9,000
另	50,000	14%	7,000
	200,000		16,000
餘額		17%	

$$f(x) = \begin{cases} 0.02x, & 0.02x, \\ 1000 + 0.06(x - 50000), & 0.000, \\ 4000 + 0.1(x - 100000), & 0.000, \\ 9000 + 0.14(x - 150000), & 0.000, \\ 16000 + 0.17(x - 200000), & 0.000, \\ 0.000 + 0.0000, & 0.00000, \\ 0.000 + 0.0000, & 0.0000, \\ 0.000 + 0.0000, & 0.0000, \\ 0.000 + 0.00000, & 0.0000, \\ 0.000 + 0.0000, & 0.000,$$

 $0 \le x \le 50000,$ $50000 \le x \le 100000$ $100000 \le x \le 150000$ $150000 \le x \le 200000$ $200000 \le x.$

A (1-dimensional) *function* can be visualized by **graph/plot**.

Example: when f(x) = 10x

• **Example:**
$$f(x) = tax$$
 you pay,

$$f(x) = \begin{cases} 0.02x, & x \leq 50000, \\ 1000 + 0.06(x - 5000), & 5000 \leq x \leq 100000 \\ 4000 + 0.1(x - 100000), & 100000 \leq x \leq 150000 \\ 9000 + 0.14(x - 150000), & 150000 \leq x \leq 200000 \\ 16000 + 0.17(x - 200000), & 200000 \leq x. \end{cases}$$

- A (1-dimensional) *function* can be visualized by **graph/plot**.
- \blacktriangleright Plotting (complicated) function can be extremely tedious \rightarrow refer to interactive demo.

Expressing relationship as a function (and graph it) enables us to extrapolate & make decision with ease.

f(x) = 10.0*x

Also important for data visualization.

Nonlinear Function

Function can be *nonlinear*, e.g.,

$$f(x) = 10x^2$$
$$f(x) = \sqrt{x}$$

(it can be checked that $f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y)$ for some x, y.)

Example: area of a circle with radius x is

$$f(x) = \pi x^2$$

Function of Function (of Function ...)

Function can be composed with another function or itself. Let f₁ : ℝ → ℝ and f₂ : ℝ → ℝ, we have

$$f(x)=f_1(f_2(x))$$

 \triangleright First evaluate $f_2(x)$, then take $f_2(x)$ as the input to $f_1(\cdot)$.

► Example: Suppose that you earn \$300 × 250 × √t per year if you spend t hours at work every working day. How much tax do you have to pay?

Function of Function (of Function ...)

Function can be composed with another function or itself. Let f₁ : ℝ → ℝ and f₂ : ℝ → ℝ, we have

$$f(x)=f_1(f_2(x))$$

 \triangleright First evaluate $f_2(x)$, then take $f_2(x)$ as the input to $f_1(\cdot)$.

► Example: Suppose that you earn \$300 × 250 × √t per year if you spend t hours at work every working day. How much tax do you have to pay?

 \triangleright take $f_2(t) = 300 \times 250 \times \sqrt{t}$ which relates t to annual income, and take $f_1(x)$ as the function from slide 6,

$$t$$
 hrs/day $\xrightarrow{f_2(\cdot)}$ \$ made per year $\xrightarrow{f_1(\cdot)}$ tax to pay $f(t) = f_1(f_2(t))$

Random Functions (Advanced)

- Functions can also be **random**.
- Example: Adam can make \$10 per hour on a sunny day, and \$20 per hour on a not sunny day. How much will he make if work for x hours tomorrow?

Random Functions (Advanced)

- Functions can also be random.
- Example: Adam can make \$10 per hour on a sunny day, and \$20 per hour on a not sunny day. How much will he make if work for x hours tomorrow?

$$f(x) = egin{cases} 10x, & ext{if tomorrow is sunny,} \ 20x, & ext{if tomorrow is not sunny.} \end{cases}$$

- Note the function f(x) depends on the weather tomorrow, which is unknown and is random.
- Random (stochastic) functions are used in modeling decision.

Artificial Intelligence (Advanced)

Credits: https://www.analyticsvidhya.com/blog/2022/11/comprehensive-guide-to-bert/

Al models such as ChatGPT does the following:

(human prompt) $\stackrel{\text{ChatGPT}}{\longrightarrow}$ (human-like response)

It is essentially a function that maps prompts to responses¹.

¹They are *auto-regressive* model and *random* functions that are more complicated than anything we've seen so far, e.g., with *billions* of terms.

Artificial Intelligence (Advanced)

- What specifically is $f(\cdot)$ in ChatGPT?
- Challenge 1: prompts & responses ≠ 'numbers'
 ▷ encode into numbers, e.g., 'Yes' ↔ 1, 'No' ↔ 0, ...
- Challenge 2: The 'relationship' between prompts (as numbers) and responses (as numbers) is complicated
 ▷ needs complicated, i.e., 'expressive', functions → artificial neural network (ANN) that emulates brain with neurons.

Artificial Neural Networks

 \triangleright With 3 inputs, x_1, x_2, x_3 , the outputs at layer 1 are²

$$\begin{split} f_1^{(1)}(x_1, x_2, x_3) &= \max\{0, W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3\}\\ f_2^{(1)}(x_1, x_2, x_3) &= \max\{0, W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3\}\\ f_3^{(1)}(x_1, x_2, x_3) &= \max\{0, W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3\}\\ f_4^{(1)}(x_1, x_2, x_3) &= \max\{0, W_{41}^{(1)}x_1 + W_{42}^{(1)}x_2 + W_{43}^{(1)}x_3\} \end{split}$$

 $^2 {\rm The}$ actual ChatGPT is 10^9 times more complicated than this!

Artificial Neural Networks

\triangleright Outputs at layer 2 are

$$\begin{split} & f_1^{(2)}(f_1^{(1)}, f_2^{(1)}, f_3^{(1)}, f_4^{(1)}) = \max\{0, W_{11}^{(2)}f_1^{(1)} + W_{12}^{(2)}f_2^{(1)} + W_{13}^{(2)}f_3^{(1)} + W_{14}^{(2)}f_4^{(1)}\} \\ & f_2^{(2)}(f_1^{(1)}, f_2^{(1)}, f_3^{(1)}, f_4^{(1)}) = \max\{0, W_{21}^{(2)}f_1^{(1)} + W_{22}^{(2)}f_2^{(1)} + W_{23}^{(2)}f_3^{(1)} + W_{24}^{(2)}f_4^{(1)}\} \\ & f_3^{(2)}(f_1^{(1)}, f_2^{(1)}, f_3^{(1)}, f_4^{(1)}) = \max\{0, W_{31}^{(2)}f_1^{(1)} + W_{32}^{(2)}f_2^{(1)} + W_{33}^{(2)}f_3^{(1)} + W_{34}^{(2)}f_4^{(1)}\} \\ & f_4^{(2)}(f_1^{(1)}, f_2^{(1)}, f_3^{(1)}, f_4^{(1)}) = \max\{0, W_{41}^{(2)}f_1^{(1)} + W_{42}^{(2)}f_2^{(1)} + W_{43}^{(2)}f_3^{(1)} + W_{44}^{(2)}f_4^{(1)}\} \end{split}$$

Artificial Neural Networks

\triangleright Final output is:

$$f^{(3)}(f_1^{(2)}, f_2^{(2)}, f_3^{(2)}, f_4^{(2)}) = W_{31}^{(3)}f_1^{(2)} + W_{32}^{(3)}f_2^{(2)} + W_{33}^{(3)}f_3^{(2)} + W_{34}^{(3)}f_4^{(2)}$$

 \rhd The NN function can be seen as a composition of functions:

$$f_{\rm op}(x_1, x_2, x_3) = f^{(3)}(f^{(2)}(f^{(1)}(x_1, x_2, x_3)))$$

> See demo at https://playground.tensorflow.org

Inverse Problem

Given some relationships, how do we know the function?

• Assume a parametric form for the function:

$$y = f(x; a, b, c) = ax^2 + bx + c$$

Brute force to find the best a, b, c (see interactive demo) -

Inverse Problem & Optimization

Besides brute-forcing, a better approach to systemically find a, b, c that best minimize the error.

This is an optimization (regression) problem (Monday)

$$\min_{\substack{a,b,c}} \underbrace{|y_1 - f(x_1; a, b, c)| + \dots + |y_m - f(x_m; a, b, c)|}_{\text{summed error!}}$$

Inverse Problem & Optimization

Parameter fitting by optimization is also known as the training process for machine learning.

- We often use optimization to train the parameters (recall those W⁽¹⁾₁₁, W⁽¹⁾₁₂, ...) in an ANN!
- See demo https://playground.tensorflow.org

Summary

. . .

- Representing (i.e., abstractizing) relationships by function is a powerful concept
 - allows us to study trend and make prediction
 - allows us to model real world behavior
 - important for downstream applications (AI, machine learning, etc.)
- After the break, we will build up more applications of functions: inequality, graph problem, finance applications,

How to use inequality to model decision?

Using inequality for decision modeling

$$X = \{x \mid f(x) \le 0\}$$

Interpreted as 'the set of all x such that f(x) ≤ 0'. Inequality defines a set of numbers 'shaped' by a function.

Example:

$$f(x) = x - 10 \le 0 \Longleftrightarrow x \le 10$$

Example:

$$f(x) = x^2 - 10 \le 0 \Longleftrightarrow x^2 \le 10$$

Example:

$$f(x_1,x_2) = x_1 + x_2 - 10 \leq 0 \Longleftrightarrow x_1 + x_2 \leq 10$$

Visualizing Inequality

• **Example**:
$$x_1 + x_2 \le 1$$

• **Example**:
$$x_1^2 + x_2^2 \le 1$$

What about
$$\{x_1, x_2 : x_1 + x_2 \le 10, x_1^2 + x_2^2 \le 1\}$$
?
— interpreted as $x_1 + x_2 \le 1$ AND $x_1^2 + x_2^2 \le 1$

Linear Inequality & Half-space

When f(x) is a linear function, its resulting inequality defines a half-space whose half-plane is defined by f(x) = 0.

Example: refer to interactive demo

Intersection of Linear Inequalities

Each linear inequality forms a *half-space*, the **intersection** of them forms a *polygon*!

Example: how does the set

$$X = \{x_1, x_2 : x_1 + x_2 \le 3, -x_1 + x_2 \le 5, x_1 - x_2 \le 3\}$$

look like? — refer to interactive demo

Optimizing with inequality

 Continuing with the 'inverse problem' example, we mayz consider

$$\min_{\substack{a,b,c \\ s.t.}} |y_1 - f(x_1; a, b, c)| + \dots + |y_m - f(x_m; a, b, c)| \\ \underbrace{-10 \le a \le 10, -10 \le b \le 10, -10 \le c \le 10}_{\text{restrictions on } a, b, c}$$

- Imagine that a, b, c are some decisions we are about to make, the perspective of constrained optimization allows us to make more precise decision.
- On Monday, we will learn about linear program which is a powerful class of optimization problems for decision making.

Graph Problem & Example of Algorithms (Optional)

Shortest Path Problem

Q: what is the shortest path from *MTR* to *Shaw*?

Shortest Path Problem

How to solve the problem 'properly'? by Mathematical Modeling.

- We have seen examples functions, inequalities, etc. on what are mathematical models
- ▶ In this case, we will need a Graph Model.
- The graph model enables us to define the problem properly.
- To solve the problem, we need algorithm a set of procedures — that will lead us to solving every shortest path problem.

Examples of Graphs

Metro networks (ignore the Lightrail line below)

 $\begin{array}{l} \mathsf{vertex} \longleftrightarrow \mathsf{station} \\ \mathsf{edge} \longleftrightarrow \mathsf{railtrack} \end{array}$

Examples of Graphs

Examples of Graphs

Shortest Path Problem

Consider a weighted graph:

- Defined by G = (V, E, w).
- V, E are called the vertex & edge sets.
- ► w(·) denotes the weight of an edge, e.g., the *travel time* on the edge.
- Example: w(MTR, CC) = 3, w(CWC, Shaw) = 10.

Shortest Path Problem (cont'd)

Q: what is the shortest path from *MTR* to *Shaw*?

- Let $P = (v_0, v_1, ..., v_k)$.
- Length of P is given by

$$\ell(\mathbf{P}) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Shortest Path Problem (cont'd)

Q: what is the shortest path from *MTR* to *Shaw*?

how to find the shortest path on a large graph?

Properties of a Shortest Path

Observation 1:

A shortest path never passes twice the same vertex.

Observation 2:

If $P = (v_1, v_2, ..., v_m)$ is a shortest path from v_1 to v_m , then a shortest path from v_1 to v_i , $i \le m$ is the corresponding initial portion of P, i.e., $(v_1, ..., v_i)$.

Dijkstra's Algorithm

Initialize: (A) maintain a table of cost c(v), where starting vertex has cost c(v₀) = 0, others have cost c(v_i) = ∞, i ≠ 0; (B) maintain a set of visited vertices S = Ø.

Iteration:

- Choose the unvisited vertex with minimum cost denote it by v_{min} and update $S \leftarrow S \cup \{v_{min}\}$.
- ▶ For every neighbor of v_{min} that are not in S,

$$c(v_i) \leftarrow \min\{c(v_i), c(v_{min}) + w(v_{min}, v_i)\}, \ \forall \ v_i \in \mathcal{N}_{v_{min}} \setminus S$$

• End when every vertices are visited, i.e., V = S

Return: a table of cost c(v) with the shortest path distance.

Dijkstra's Algorithm - Example 1

Q: what is the length of shortest path from a to z?

Initialization:

V	C(v>	Path		
a	0	a		
Ь	4	C,b		
С	00	-		
d	2	G,d		
e	5	Q,d,e		
S	\sim	-		
$S = \{a_{i}d\}$				

 \downarrow

V	C(v)	Path		
a	0	0		
Ь	4	Q,b		
С	7	a,b,c		
d	2	a,d		
e	5	ajdje		
'8	6	a, d, e, z		
$S = \{a_i, d_i, b_i, e_i, F_i, c\}$				

Dijkstra's Algorithm - Example 2

Dijkstra's Algorithm - Complexity

- Claim: The worst case runtime of the algorithm is O(n²) (addition & comparisons), where n is the number of vertices.
- 1. The algorithm terminates in no more than n iterations.
- 2. At each iteration,
 - We can determine v^k with no more than n-1 comparison.
 - We can update c(·) by doing no more than 2(n − 1) additions and comparisons.
- In the worst case, the algorithm completes in

$$n \times 3(n-1) = 3n^2 - 3n$$
 additions & comparisons.

It may take much more steps if we don't use the Dijkstra's algorithm.

Summary

A typical flow for problem solving:

modelling \longrightarrow design & apply algorithm \longrightarrow analyze output

- These steps are inter-connected but requires good understanding of the problem and good modelling.
- Back to the Dijkstra's algorithm, note that it is one of the most popular algorithms for graph with applications to:
 - Google Maps, Rubik's cube, etc.
- Extensions: graph with cycles, random shortest path (to model congestion)

Mathematical Modeling in Finance, Systems Engineering & Data Science

Modeling Stock Prices

HOME > NVDA · NASDAQ

NVIDIA Corp

A common model is the auto-regressive model — stock price today \price stock price yesterday + noise

 $stock_t = a stock_{t-1} + b noise_t$

- Parameters a, b are to be determined by inverse problem.
- Implication: knowing $a, b \implies$ a model for stock price.

Modeling Opinions

Our opinions are affected by peers/friends: we can model

$$opinion_i^{t+1} = avg(opinion_i^t, j is i's friend)$$

► This leads to opinion^{t+1} = f(opinion^t; network) ⇒ can estimate the friendship network!

Takeaway for Today

- What is a function and how to visualize it.
- How to build inequalities (& constraints) based on functions and what are the geometric insights about it.
- (Optional) Advanced applications of functions (artificial intelligence, optimization, inverse problem).
- (Optional) Shortest path problem how to go from math. modeling to applying an algorithm for problem solving.
- (Hopefully) Appreciate the beauty of mathematical modeling and optimization!

Enjoy and See you on Monday!